Alternative separation of Laplace’s equation in toroidal coordinates and its application to electrostatics
نویسنده
چکیده
The usual method of separation of variables to find a basis of solutions of Laplace’s equation in toroidal coordinates is particularly appropriate for axially symmetric applications; for example, to find the potential outside a charged conducting torus. An alternative procedure is presented here that is more appropriate where the boundary conditions are independent of the spherical coordinate y (rather than the toroidal coordinate Z or the azimuthal coordinate cÞ. Applying these solutions to electrostatics leads to solutions, given as infinite sums over Legendre functions of the second kind, for (i) an arbitrary charge distribution on a circle, (ii) a point charge between two intersecting conducting planes, (iii) a point charge outside a conducting half plane. In the latter case, a closed expression is obtained for the potential. Also the potentials for some configurations involving charges inside a conducting torus are found in terms of Legendre functions. For each solution in the basis found by this separation, reconstructing the potential from the charge distribution (corresponding to singularities in the solutions) gives rise to integral relations involving Legendre functions. r 2005 Elsevier B.V. All rights reserved.
منابع مشابه
Upper-division student difficulties with separation of variables
Separation of variables can be a powerful technique for solving many of the partial differential equations that arise in physics contexts. Upper-division physics students encounter this technique in multiple topical areas including electrostatics and quantum mechanics. To better understand the difficulties students encounter when utilizing the separation of variables technique, we examined stud...
متن کاملApplication of Multi-objective Optimization for Optimization of Half-toroidal Continuously Variable Transmission
Among different goals defined in vehicle design process, fuel consumption (FC) is one of the most important objectives, which significantly has taken into account lately, both by the customers and vehicle manufacturers. One of the significant parameters which impacts the vehicle FC is the efficiency of vehicle's power train. In this paper, a half-toroidal continuously variable transmission (CVT...
متن کاملA Boundary Meshless Method for Neumann Problem
Boundary integral equations (BIE) are reformulations of boundary value problems for partial differential equations. There is a plethora of research on numerical methods for all types of these equations such as solving by discretization which includes numerical integration. In this paper, the Neumann problem is reformulated to a BIE, and then moving least squares as a meshless method is describe...
متن کاملA Numerical Study of the Effect of Aspect Ratio on Heat Transfer in an Annular Flow Through a 270-Degree Curved Pipe.
In the present paper, a three dimensional annular developing incompressible laminar flow through 270- degree curved pipe is numerically simulated. The dimensionless governing equations of continuity, momentums and energy are driven in toroidal coordinates. The governing equations are discretized by projection algorithm using forward difference in time and central difference in space. A three-di...
متن کاملSignificant Error Propagation in the Finite Difference Solution of Non-Linear Magnetostatic Problems Utilizing Boundary Condition of the Third Kind
This paper poses two magnetostatic problems in cylindrical coordinates with different permeabilities for each region. In the first problem the boundary condition of the second kind is used while in the second one, the boundary condition of the third kind is utilized. These problems are solved using the finite element and finite difference methods. In second problem, the results of the finite di...
متن کامل